Abstract

Although investigations in the field of stirred liquid/liquid dispersions have a long history, new questions are still emerging in dealing with the different aspects of industrial applications, such as suspension polymerizations. In this study the influence of physical parameters on drop size and power consumption, like liquid level, stirrer speed, stirrer height and baffle length, were experimentally analyzed. The results were used to determine modeling approaches which are capable of displaying the influence of the named parameters. It was shown that the energy law ( d p ∼ ɛ −0.4; Shinnar, 1961 [1]) using the average energy dissipation only roughly predicts the Sauter mean diameter. The population balance equation (PBE) used with a one-zone modeling approach is slightly better in its prediction of results. Very satisfying predictions were obtained by using the PBE with a two-zone model. The overall deviations between calculated and predicted Sauter mean diameter was less than 10% using this approach. Only the successful prediction of the influence of the baffle length remained unattainable, even with the PBE two-zone model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.