Abstract
Disulfide bonds stabilize protein structures and play an important role in protein folding. Predicting disulfide connectivity precisely is an important task for determining the structural/functional relationships of proteins. The accuracy obtained by conventional disulfide connectivity predictions using sequence information only is limited. In this study, we aimed to develop a new method to improve the prediction accuracy of disulfide connectivity using support vector machine (SVM) with prior knowledge of disulfide bonding states and evolutionary information. The separations among the oxidized cysteine residues on a protein sequence have been encoded into vectors named cysteine separation profiles (CSPs). Our previous prediction of disulfide connectivity for non-redundant proteins in SwissProt release no. 39 (SP39) sharing less than 30% sequence identity has yielded the accuracy of 49% using CSP method alone. In this study, for proteins from the same dataset, an even better fourfold cross-validation accuracy of 62% was achieved using SVM with CSP as a feature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Chinese Institute of Chemical Engineers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.