Abstract

Concrete strength prediction is a complex nonlinear regression task that involves multiple ingredients and age as key factors. In order to achieve accurate predictions, the Markov Chain Monte Carlo (MCMC) and Gaussian Process Regression (GPR) techniques are employed. The dataset, sourced from Kaggle repositories, comprises a comprehensive collection of 1030 data points. Alongside the existing features (content of ingredients, age and strength), we introduce new ones, including water-cement ratio, sand ratio, and water-binder ratio, to enhance the model's credibility. To determine the optimal kernel function, the dataset is partitioned into training and testing subsets. Notably, the MCMC method yields an R2 of 0.41, while GPR demonstrates a significantly improved R2 of 0.89. Further investigation is warranted to refine the model's fit and optimize its predictive capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.