Abstract

In the present investigation, the axial buckling and post-buckling configurations of single-walled carbon nanotubes (SWCNTs) are studied including the thermal environment effect. For this purpose, Eringen’s nonlocal elasticity continuum theory is implemented into the classical Euler–Bernoulli beam theory to represent the SWCNTs as a nonlocal elastic beam model. A closed-form analytical solution is carried out to analyze the static response of SWCNTs in their post-buckling state in which the axial buckling load is assumed to be beyond the critical axial buckling load. Common sets of boundary conditions, named simply supported–simply supported (SS–SS), clamped–clamped (C–C), and clamped–simply supported (C–SS), are considered in the investigation. Selected numerical results are given to represent the variation of the carbon nanotube’s mid-span deflection with the applied axial load corresponding to various nonlocal parameters, length-to-diameter aspect ratios, temperature changes, and end supports. Moreover, a comparison between the post-buckling behaviors of SWCNTs at low- and high-temperature environments is presented. It is found that the size effect leads to a decrease of the axial buckling load especially for SWCNTs with C–C boundary conditions. Also, it is revealed that the value of the temperature change plays different roles in the post-buckling response of SWCNTs at low- and high-temperature environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.