Abstract

Cancer is one of the major causes of death in the modern world, and the incidence varies considerably based on race, ethnicity, and region. Novel cancer treatments, such as surgery and immunotherapy, are ineffective and expensive. In this situation, ion channels responsible for cell migration have appeared to be the most promising targets for cancer treatment. This research presents findings on the organic compounds present in Albizia lebbeck ethanolic extracts (ALEE), as well as their impact on the anti-migratory, anti-proliferative and cytotoxic potentials on MDA-MB 231 and MCF-7 human breast cancer cell lines. In addition, artificial intelligence (AI) based models, multilayer perceptron (MLP), extreme gradient boosting (XGB), and extreme learning machine (ELM) were performed to predict in vitro cancer cell migration on both cell lines, based on our experimental data. The organic compounds composition of the ALEE was studied using gas chromatography-mass spectrometry (GC–MS) analysis. Cytotoxicity, anti-proliferations, and anti-migratory activity of the extract using Tryphan Blue, MTT, and Wound Heal assay, respectively. Among the various concentrations (2.5–200 μg/mL) of the ALEE that were used in our study, 2.5–10 μg/mL revealed anti-migratory potential with increased concentrations, and they did not show any effect on the proliferation of the cells (P < 0.05; n ≥ 3). Furthermore, the three data-driven models, Multi-layer perceptron (MLP), Extreme gradient boosting (XGB), and Extreme learning machine (ELM), predict the potential migration ability of the extract on the treated cells based on our experimental data. Overall, the concentrations of the plant extract that do not affect the proliferation of the type cells used demonstrated promising effects in reducing cell migration. XGB outperformed the MLP and ELM models and increased their performance efficiency by up to 3% and 1% for MCF and 1% and 2% for MDA-MB231, respectively, in the testing phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.