Abstract

Background:The low breast cancer survival rates in less developed countries are critical. The machine learning techniques predict cancers survival with high accuracy. Missing data are the most important limitation for using the highest potential of these techniques to predict cancers survival. Multiple imputation (MI) was implemented and analyzed in detail to impute the missing data of a breast cancer dataset.Methods:The dataset was from The Omid Treatment and Research Center Urmia, Iran between Jan 2006 and Dec 2012 and had information from 856 women. The algorithms such as C5 and repeated incremental pruning to produce error reduction were applied on the imputed versions of the original dataset and the non-imputed dataset to predict and extract clinical rules, respectively.Results:The findings showed the performance of C5 in all the evaluation criteria including accuracy (84.42%), sensitivity (92.21%), specificity (64%), Kappa statistic (59.06%), and the area under the receiver operator characteristic (ROC) curve (0.84), was improved after imputation.Conclusion:The dataset of the present study met the requirements for using the multiple imputation method. The extracted rules after the application of MI were more comprehensive and contained knowledge that is more clinical. However, the clinical value of the extracted rules after filling in the missing data did not noticeably increase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.