Abstract

The mechanics of cutting with helical ball-end mills are presented. The fundamental cutting parameters, the yield shear stress, average friction coefficient on the rake face and shear angle are measured from a set of orthogonal cutting tests at various cutting speeds and feeds. The cutting forces are separated into edge or ploughing forces and shearing forces. The helical flutes are divided into small differential oblique cutting edge segments. The orthogonal cutting parameters are carried to oblique milling edge geometry using the classical oblique transformation method, where the chip flow angle is assumed to be equal to the local helix angle. The cutting force distribution on the helical ball-end mill flutes is accurately predicted by the proposed method, and the model is validated experimentally and statistically by conducting more than 60 ball-end milling experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.