Abstract
A quantitative structure−property relationship study is performed to develop mathematical models that relate the structures of a heterogeneous group of organic compounds to their autoignition temperature values. The molecular structures of the compounds are represented by calculated numerical descriptors which encode their topological, electronic, and geometric features. These descriptors are used to develop several multiple linear regression and computational neural network models to predict the autoignition temperatures of a data set consisting of hydrocarbons, halohydrocarbons, and compounds containing oxygen, sulfur, and nitrogen. Both genetic algorithm and simulated annealing routines are used to select subsets of descriptors based on multiple linear regression and computational neural networks. The models that are developed have predictive ability in the range of the experimental error of autoignition temperature measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Chemical Information and Computer Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.