Abstract
BackgroundPredicting adverse health events and implementing preventative measures are a necessary challenge. It is important for healthcare planners and policymakers to allocate the limited resource to high-risk persons. Prediction is also important for older individuals, their family members, and clinicians to prepare mentally and financially. The aim of this study is to develop a prediction model for within 11-year dependent status requiring long-term nursing care or death in older adults for each sex.MethodsWe carried out age-specified cohort study of community dwellers in Nisshin City, Japan. The older adults aged 64 years who underwent medical check-up between 1996 and 2005 were included in the study. The primary outcome was the incidence of the psychophysically dependent status or death or by the end of the year of age 75 years. Univariable logistic regression analyses were performed to assess the associations between candidate predictors and the outcome. Using the variables with p-values less than 0.1, multivariable logistic regression analyses were then performed with backward stepwise elimination to determine the final predictors for the model.ResultsOf the 1525 female participants at baseline, 105 had an incidence of the study outcome. The final prediction model consisted of 15 variables, and the c-statistics for predicting the outcome was 0.763 (95% confidence interval [CI] 0.714–0.813). Of the 1548 male participants at baseline, 211 had incidence of the study outcome. The final prediction model consisted of 16 variables, and the c-statistics for predicting the outcome was 0.735 (95% CI 0.699–0.771).ConclusionsWe developed a prediction model for older adults to forecast 11-year incidence of dependent status requiring nursing care or death in each sex. The predictability was fair, but we could not evaluate the external validity of this model. It could be of some help for healthcare planners, policy makers, clinicians, older individuals, and their family members to weigh the priority of support.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.