Abstract

Ion channels, which can be modulated by peptides, are promising drug targets for neurological, metabolic, and cardiovascular disorders. Because it is expensive and labor-intensive to experimentally screen ion channel-modulating peptides (IMPs), in-silico approaches can serve as excellent alternatives. In this study, we present PrIMP, prediction models for screening IMPs that can target sodium, potassium, and calcium ion channels, as well as nicotine acetylcholine receptors (nAChRs). To overcome the data insufficiency of the IMPs, we utilized two types of knowledge transfer approaches: multi-task learning (MTL) and transfer learning (TL). MTL enabled model training for four target tasks simultaneously with hard parameter sharing, thereby increasing model generalization. TL transferred knowledge of pre-trained model weights from antimicrobial peptide data, which was a much larger, naturally-occurring functional peptide dataset that could potentially improve the model performance. MTL and TL successfully improved the prediction performance of prediction models. In addition, a hybrid approach by implementing deep learning along with traditional machine learning was utilized, with additional performance improvements. PrIMP achieved F1 scores of 0.924 (sodium ion channel), 0.937 (potassium ion channel), 0.898 (calcium ion channel), and 0.931 (nAChRs). The pre-processed dataset and proposed model are available at https://github.com/bzlee-bio/PrIMP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.