Abstract

Quantitative predictions are ubiquitous in ecology, yet there is limited discussion on the nature of prediction in this field. Herein I derive a general quantitative framework for analyzing and partitioning the sources of uncertainty that control predictability. The implications of this framework are assessed conceptually and linked to classic questions in ecology, such as the relative importance of endogenous (density-dependent) vs. exogenous factors, stability vs. drift, and the spatial scaling of processes. The framework is used to make a number of novel predictions and reframe approaches to experimental design, model selection, and hypothesis testing. Next, the quantitative application of the framework to partitioning uncertainties is illustrated using a short-term forecast of net ecosystem exchange. Finally, I advocate for a new comparative approach to studying predictability across different ecological systems and processes and lay out a number of hypotheses about what limits predictability and how these limits should scale in space and time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.