Abstract

A new family of planar nanostructures having graphene-like electronic band structure is theoretically investigated by density functional theory (DFT). Based on general perturbation theory and a tight-binding model, it was shown that graphene-like planar structures, consisting of identical nanoparticles with relatively weak contacts between them, should have an electronic band structure with Dirac cones. Two such structures, consisting of 71- or 114-silicon atom nanoparticles, were investigated by DFT using VASP software package. The band-structure calculations show the presence of Dirac cones with electron group velocity equal to 1.05 × 105 and 0.53 × 105 m/s, respectively. By generalizing the theory, a new family of 3D structures having intersecting areas with linear dispersion in the band structures was derived. As an example, the band structure of identical 25-atom silicon nanoclusters arranged in a simple cubic lattice was calculated. It was shown that the band structure has features similar to the Dirac cones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.