Abstract

The CMOS Radiation Effects Measurement (CREM) experiment is presently being flown on the Explorer-55. The purpose of the experiment is to evaluate device performance in the actual space radiation environment and to correlate the respective measurements to on-the-ground laboratory irradiation results. The experiment contains an assembly of CMOS and P-MOS devices shielded in front over 2? steradian by flat slabs of aluminum of 40, 80, 150, and 300 mils (1.02, 2.04, 3.81, and 7.62mm) thicknesses, and by a practically infinite shield in the back. This paper presents initial results obtained from the CREM experiment. Predictions of radiation damage to C-MOS devices are based on standard environment models and computational techniques. A comparison of the shifts in CMOS threshold potentials, that is, those measured in space to those obtained from the on-the-ground simulation experiment with Co-60, indicates that the measured space damage is smaller than predicted by about a factor of 2-3 for thin shields (t < 100 mils), but agrees well with predictions for thicker shields. It is not clear at this time how the trapped particle environment models or the computational methods should be modified in order to achieve better agreement between experimental results and predicted damage curves. A subsequent paper will present some considerations along these lines as well as an evaluation of performance of C-MOS devices located in a typical electronic subsystem box within the spacecraft.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.