Abstract

The suitable thermal, chemical, and corrosion resistance properties of glass make it possible to be used in a wide variety of product manufacturing, like lenses, mirrors, mold, semiconductor, biomedical, optical, and micro-electronics. However, machining of glass like any brittle material has big challenges owing to its inherent brittleness. Ductile mode machining is known to promote the material removal from a brittle material in ductile manner rather than by brittle fracture. In high-speed machining, the thermal softening effects can enhance flexibility in ductile machining of brittle materials. In this paper, an analytical model is developed to predict the amount of temperature generated in the immediate next removable layer (INRL) of the soda-lime glass work piece per unit depth of cut \( \Delta {\overline{T}}_{\mathrm{INRL}} \) based on fundamental micro-machining principle and material physical properties. The model incorporates the effects of cutting speed, feed rate, strain rate, and thermal softening effect. The simulation and experimental results showed that at high cutting speed, glass softening can be achieved by adiabatic heating in order to facilitate ductile machining. The amount of adiabatic heating can be controlled by predicting the amount of the \( \Delta {\overline{T}}_{\mathrm{INRL}} \).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.