Abstract

Microstructure significantly affects materials' physical properties. Predicting and characterizing temporal microstructural evolution is valuable and helpful for understanding the processing-structure-property relationship but is rarely conducted on experimental data for its scarcity, unevenness, and uncontrollability. As such, a self-designed in-situ tensile system in conjunction with a scanning electron microscope was adopted to observe the grain evolution during the tensile process. We then used a deep learning-based model to capture grain growth behavior from the experimental data and characterize grain boundary and orientation evolution. We validated the framework's effectiveness by comparing the predictions and ground truths from quantitative and qualitative perspectives, using data from (1) a tensile experimental dataset and (2) a phase-field simulation dataset. Based on the two datasets, the model's predicted results showed good agreement with ground truths in the short term, and local differences emerged in the long term. This pipeline opened an opportunity for the characterization of microstructure evolution and could be easily extended to other scenarios, such as dendrite growth and martensite transformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.