Abstract
One goal of human microbiome studies is to relate host traits with human microbiome compositions. The analysis of microbial community sequencing data presents great statistical challenges, especially when the samples have different library sizes and the data are overdispersed with many zeros. To address these challenges, we introduce a new statistical framework, called predictive analysis in metagenomics via inverse regression (PAMIR), to analyze microbiome sequencing data. Within this framework, an inverse regression model is developed for overdispersed microbiota counts given the trait, and then a prediction rule is constructed by taking advantage of the dimension-reduction structure in the model. An efficient Monte Carlo expectation-maximization algorithm is proposed for maximum likelihood estimation. The method is further generalized to accommodate other types of covariates. We demonstrate the advantages of PAMIR through simulations and two real data examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.