Abstract

AbstractIn the domain of hard real-time systems, the Worst-Case Execution Time (WCET) is one of the most important design criteria. Safely and accurately estimating the WCET during a static WCET analysis is computationally demanding because of the involved data flow, control flow, and microarchitecture analyses. This becomes critical in the field of multi-criterial compiler optimizations that trade the WCET with other design objectives. Evolutionary algorithms are typically exploited to solve a multi-objective optimization problem, but they require an extensive evaluation of the objectives to explore the search space of the problem. This paper proposes a method that utilizes machine learning to build a surrogate model in order to quickly predict the WCET instead of costly estimating it using static WCET analysis. We build a prediction model that is independent of the source code and assembly code features, so a compiler can utilize it to perform any compiler-based optimization. We demonstrate the effectiveness of our model on multi-criterial function inlining, where we aim to explore trade-offs between the WCET, code size, and energy consumption at compile time.KeywordsMulti-objective optimizationClassificationHard real-time systemCompiler-based optimization

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.