Abstract
Predicting the trajectory of a wide receiver in the game of American football requires prior knowledge about the game (e.g., route trees, defensive formations) and an accurate model of how the environment will change over time (e.g., opponent reaction strategies, motion attributes of players). Our aim is to build a computational model of the wide receiver, which takes into account prior knowledge about the game and short-term predictive models of how the environment will change over time. While prior knowledge of the game is readily accessible, it is quite challenging to build predictive models of how the environment will change over time. We propose several models for predicting short-term motions of opponent players to generate dynamic input features for our wide receiver forecasting model. In particular, we model the wide receiver with a Markov Decision Process (MDP), where the reward function is a linear combination of static features (prior knowledge about the game) and dynamic features (short-term prediction of opponent players). Since the dynamic features change over time, we make recursive calls to an inference procedure over the MDP while updating the dynamic features. We validate our technique on a video dataset of American football plays. Our results show that more informed models that accurately predict the motions of the defensive players are better at forecasting wide receiver plays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.