Abstract

Disease is a major concern for the conservation of great apes, and one that is likely to become increasingly relevant as deforestation and the rise of ecotourism bring humans and apes into ever closer proximity. Consequently, it is imperative that preventative measures are explored to ensure that future epidemics do not wipe out the remaining populations of these animals. In this paper, social network analysis was used to investigate vulnerability to disease in a population of wild orang-utans and a community of wild chimpanzees. Potential ‘superspreaders’ of disease - individuals with disproportionately central positions in the community or population - were identified, and the efficacy of vaccinating these individuals assessed using simulations. Three resident female orang-utans were identified as potential superspreaders, and females and unflanged males were predicted to be more influential in disease spread than flanged males. By contrast, no superspreaders were identified in the chimpanzee network, although males were significantly more central than females. In both species, simulating the vaccination of the most central individuals in the network caused a greater reduction in potential disease pathways than removing random individuals, but this effect was considerably more pronounced for orang-utans. This suggests that targeted vaccinations would have a greater impact on reducing disease spread among orang-utans than chimpanzees. Overall, these results have important implications for orang-utan and chimpanzee conservation and highlight the role that certain individuals may play in the spread of disease and its prevention by vaccination.

Highlights

  • Disease is a major threat to the survival of the great apes

  • The orang-utan network was characterised by sparse and weak connections compared to the density of strong connections in the chimpanzee community, suggesting that disease transmission between individual orang-utans is likely to be limited, in contrast to chimpanzees that are all inter-connected through a range of pathways, allowing for potentially very rapid disease spread

  • The results presented here have implications for great ape conservation strategies

Read more

Summary

Introduction

Disease is a major threat to the survival of the great apes. The emergence of Ebola and its impact on chimpanzee (Pan troglodytes) and gorilla (Gorilla gorilla) populations in western Africa has provided a clear warning of the susceptibility of great ape populations to disease [1,2,3]. The increased deforestation and forest fragmentation that is expected to occur in the future, combined with the rise of ecotourism, will increase contacts between humans and wildlife and lead to a much higher risk of inter-specific disease transmission [5]. This will be problematic for the great apes, as their close phylogenetic relationship with humans means that they are likely to be susceptible to many of the same infectious diseases [6]. The slow life histories that characterise the great apes make them vulnerable to population declines, as it takes many years for populations to recover [7,8,9]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.