Abstract
This work presents the use of a formal thermodynamic model together with UNIFAC activity coefficients model, without any further adjustable parameter, to predict the surface tension of biodiesel fuels based on the equality of chemical potentials between the vapor-liquid interface and liquid bulk. The biodiesel samples included in this work were reported previously in the open literature. They were produced from vegetable oils such as: canola, coconut, corn, cottonseed, hazelnut, lard, palm, peanut, rapeseed, safflower, soybean, sunflower, and Walnut. Surface tension values for 18 samples of binary, ternary and quaternary mixtures of fatty acid ethyl esters (FAEEs) at T = 298.15 were predicted with an average absolute relative deviation (AARD) = 1.39%. Surface tension values for 31 biodiesel samples composed by fatty acid methyl esters (FAMEs) were also predicted at temperatures from 303.15 K to 353.15 K. The AARD value obtained for the 78 experimental points of biodiesel samples was 1.86% which shows a very good agreement with experimental measurements. In the UNIFAC method, predictions of surface tension values for the mixtures are based on the knowledge of the values of the surface tension for the pure components; these values were obtained from different sources. Also, two simple mixing rules on mass and mole fraction basis were used to predict the surface tension of biodiesel fuels. The AARD value obtained from the comparison between experimental and calculated values were: 2.77% and 2.91% for mixing rules on mass and mole fractions, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.