Abstract
Accomodation of important sources of uncertainty in ecological models is essential to realistically predicting ecological processes. The purpose of this project is to develop a robust methodology for modeling natural processes on a landscape while accounting for the variability in a process by utilizing environmental and spatial random effects. A hierarchical Bayesian framework has allowed the simultaneous integration of these effects. This framework naturally assumes variables to be random and the posterior distribution of the model provides probabilistic information about the process. Two species in the genus Desmodium were used as examples to illustrate the utility of the model in Southeast Missouri, USA. In addition, two validation techniques were applied to evaluate the qualitative and quantitative characteristics of the predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.