Abstract

We present an analysis of several molecular dynamics trajectories of substrate-bound cytochrome P450cam. Trajectories were calculated for the native substrate, camphor, as well as for the alternative substrates, norcamphor and thiocamphor. The system modeled consisted of the crystallographically resolved amino acids, the heme group with a single oxygen atom as the distal ligand, the bound substrate, and the crystallographic waters. These trajectories of the presumptive ferryl oxygen intermediate were used to predict regiospecificity of hydroxylation and coupling between NADH consumption and product formation. Simple geometric criteria in combination with electronic considerations were used to calculate the probability of hydroxylation at specific sites on the substrate. We found that for all the cases examined, the predicted product ratios were in good agreement with the experimentally observed values. We also determined that these simple geometric criteria can be used to predict the degree of coupling between NADH consumption and product formation for a given substrate, which was in good agreement with the experimental values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.