Abstract

In this paper, a novel method based on extreme learning machine (ELM) and Copula function is proposed to predict the damages to electricity transmission facilities during ice storms. The ELM is firstly trained based on the historical data of wind speed, freezing precipitation, temperature, as well as the distribution parameters of wind and ice loads. The ELM can then be employed to predict the distributions of the real-time wind and ice loads on electricity transmission facilities. Furthermore, the correlation between wind load and ice load is modeled with Copula functions. On the basis of ELM and Copula function, the joint probability distribution of wind and ice loads can be finally formulated and applied to predict the potential damages to electricity transmission facilities such as transmission lines and towers. The proposed method is tested with a real dataset to demonstrate its effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.