Abstract
In this paper a system is designed and implemented to predict the price of second-hand housing. This system based on Lambda architecture can execute prediction in both real-time and batch modes so it can give two kinds of different price predictions that reflect current and historical conditions respectively. The kNN related algorithms are used for price prediction. By comparing the performance of brute kNN, kd tree and ball tree, kd tree is selected as the price prediction model of the system. In system implementation the kd tree model is chosen to predict prices in both real-time and batch services. The kd tree model can also recommend housings to user besides price prediction. The experiment shows the effectiveness of our system. Time and space performance of brute kNN, kd tree and ball tree are compared by experiments. And the evaluation metrics of other available maching learning models are compared. The reason of choosing the kd tree model is also explained by the experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.