Abstract

When two agents settle a mutual concern by negotiating with each other, they usually do not share their preferences so as to avoid exploitation. In such a setting, the agents may need to analyze each other's behavior to make an estimation of the opponent's preferences. This process of opponent modeling makes it possible to find a satisfying negotiation outcome for both parties. A large number of such opponent modeling techniques have already been introduced, together with different measures to assess their quality. The quality of an opponent model can be measured in two different ways: one is to use the agent's performance as a benchmark for the model's quality, the other is to directly evaluate its accuracy by using similarity measures. Both methods have been used extensively, and both have their distinct advantages and drawbacks. In this work we investigate the exact relation between the two, and we pinpoint the measures for accuracy that best predict performance gain. This leads us to new insights in how to construct an opponent model, and what we need to measure when optimizing performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.