Abstract

To predict and compare the amount of accommodation achievable by pseudophakic accommodating intraocular lenses (IOLs) using optical ray-tracing analysis. Computational laboratory. Two-element IOLs (2E-IOL, with mobile front or back optical elements) were compared with single-element IOLs (1E-IOL). Modeling using computer-assisted ray tracing of both IOL types assumed lens elements were equiconvex/equiconcave. The 4 possible combinations of configurations representing a wide range of varying positive and negative power (up to +40 diopters [D]) of front and back optical elements were evaluated. The 1E-IOLs offered limited amplitude of accommodation with axial shift (approximately 1.2 D/mm). For 2E-IOLs, configurations with high positive-power front elements returned the best amplitude of accommodation (up to approximately 3.0 D/mm when the front element power was +40 D). Considering the maximum potential amounts of axial shifts available, 1E-IOLs were predicted to provide 1.0 D of accommodation or less and 2E-IOLs were predicted to provide up to 3.0 D to 4.0 D depending on design configuration and amount of axial shift achievable. Potential issues relating to accommodative aniseikonia and spherical aberration have been identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.