Abstract

Objective The study aimed to develop a machine learning (ML)-coupled interpretable radiomics signature to predict the pathological status of non-palpable suspicious breast microcalcifications (MCs).Methods We enrolled 463 digital mammographical view images from 260 consecutive patients detected with non-palpable MCs and BI-RADS scored at 4 (training cohort, n = 428; independent testing cohort, n = 35) in the First Affiliated Hospital of Nanjing Medical University between September 2010 and January 2019. Subsequently, 837 textures and 9 shape features were subsequently extracted from each view and finally selected by an XGBoost-embedded recursive feature elimination technique (RFE), followed by four machine learning-based classifiers to build the radiomics signature.Results Ten radiomic features constituted a malignancy-related signature for breast MCs as logistic regression (LR) and support vector machine (SVM) yielded better positive predictive value (PPV)/sensitivity (SE), 0.904 (95% CI, 0.865–0.949)/0.946 (95% CI, 0.929–0.977) and 0.891 (95% CI, 0.822–0.939)/0.939 (95% CI, 0.907–0.973) respectively, outperforming their negative predictive value (NPV)/specificity (SP) from 10-fold cross-validation (10FCV) of the training cohort. The optimal prognostic model was obtained by SVM with an area under the curve (AUC) of 0.906 (95% CI, 0.834–0.969) and accuracy (ACC) 0.787 (95% CI, 0.680–0.855) from 10FCV against AUC 0.810 (95% CI, 0.760–0.960) and ACC 0.800 from the testing cohort.Conclusion The proposed radiomics signature dependens on a set of ML-based advanced computational algorithms and is expected to identify pathologically cancerous cases from mammographically undecipherable MCs and thus offer prospective clinical diagnostic guidance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.