Abstract

Freezing of gait (FOG) severely incapacitates the mobility of patients with advanced Parkinson’s disease (PD). An accurate prediction of the onset of FOG could improve the quality of life for PD patients. However, it is imperative to distinguish the possibility of the onset of FOG from that of voluntary stopping. Our previous work demonstrated the neurological differences between the transition to FOG and voluntary stopping using electroencephalogram (EEG) signals. We employed a timed up-and-go (TUG) task to elicit FOG in PD patients. Some of these TUG tasks had an additional voluntary stopping component, where participants stopped walking based on verbal instruction to “stop”. The performance of the convolutional neural network (CNN) in identifying the transition to FOG from normal walking and the transition to voluntary stopping was explored. To the best of our knowledge, this work is the first study to propose a deep learning method to distinguish the transition to FOG from the transition to voluntary stop in PD patients. The models, trained on the EEG data from 17 PD patients who manifested FOG episodes, considering a short two-second transition window for FOG occurrence or voluntary stopping, achieved close to 75% classification accuracy in distinguishing transition to FOG from the transition to voluntary stopping or normal walking. Our results represent an important step toward advanced EEG-based cueing systems for smart FOG intervention, excluding the potential confounding of voluntary stopping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.