Abstract
BackgroundInsecticide-treated bed nets (ITNs), including long-lasting insecticidal nets (LLINs), play a primary role in global campaigns to roll back malaria in tropical Africa. Effectiveness of treated nets depends on direct impacts on individual mosquitoes including killing and excite-repellency, which vary considerably among vector species due to variations in host-seeking behaviours. While monitoring and evaluation programmes of ITNs have focuses on morbidity and all-cause mortality in humans, local entomological context receives little attention. Without knowing the dynamics of local vector species and their responses to treated nets, it is difficult to predict clinical outcomes when ITN applications are scaled up across African continent. Sound model frameworks incorporating intricate interactions between mosquitoes and treated nets are needed to develop the predictive capacity for scale-up applications of ITNs.MethodsAn established agent-based model was extended to incorporate the direct outcomes, e.g. killing and avoidance, of individual mosquitoes exposing to ITNs in a hypothetical village setting with 50 houses and 90 aquatic habitats. Individual mosquitoes were tracked throughout the life cycle across the landscape. Four levels of coverage, i.e. 40, 60, 80 and 100%, were applied at the household level with treated houses having only one bed net. By using Latin hypercube sampling scheme, parameters governing killing, diverting and personal protection of net users were evaluated for their relative roles in containing mosquito populations, entomological inoculation rates (EIRs) and malaria incidence.ResultsThere were substantial gaps in coverage between households and individual persons, and 100% household coverage resulted in circa 50% coverage of the population. The results show that applications of ITNs could give rise to varying impacts on population-level metrics depending on values of parameters governing interactions of mosquitoes and treated nets at the individual level. The most significant factor in determining effectiveness was killing capability of treated nets. Strong excito-repellent effect of impregnated nets might lead to higher risk exposure to non-bed net users.ConclusionWith variabilities of vector mosquitoes in host-seeking behaviours and the responses to treated nets, it is anticipated that scale-up applications of INTs might produce varying degrees of success dependent on local entomological and epidemiological contexts. This study highlights that increased ITN coverage led to significant reduction in risk exposure and malaria incidence only when treated nets yielded high killing effects. It is necessary to test efficacy of treated nets on local dominant vector mosquitoes, at least in laboratory, for monitoring and evaluation of ITN programmes.
Highlights
Insecticide-treated bed nets (ITNs), including long-lasting insecticidal nets (LLINs), play a primary role in global campaigns to roll back malaria in tropical Africa
Insecticide-treated nets (ITNs) and indoor residual spray (IRS) are the major tactics for combating malaria mediated by three major malaria vectors, Anopheles gambiae, Anopheles arabiensis and Anopheles funestus, in sub-Saharan Africa
A statistical test revealed that increased levels of personal protection of ITNs could reduced malaria incidence only in net users (F = 22.9, df = 1 and 198, p < 0.01)
Summary
Insecticide-treated bed nets (ITNs), including long-lasting insecticidal nets (LLINs), play a primary role in global campaigns to roll back malaria in tropical Africa. Effectiveness of treated nets depends on direct impacts on individual mosquitoes including killing and excite-repellency, which vary considerably among vector species due to variations in host-seeking behaviours. Scale-up applications of ITNs in particular are highlighted because it protects users, and non-users through insecticidal and/or repellent effects concurred by treated nets. The latter requires a high coverage so that the whole community can benefit[1]. For the long-lasting insecticidal nets, 74 and 63% mortality against An. funestus and An. gambiae, respectively, were observed in Tanzania [7] These variations of ITN impacts on mosquitoes imply that results of randomized community trials might be circumstantial with limited potentials for generalization. It is concerned that the emphasis on increased ITN coverage for combating malaria in Africa might fail to generate anticipated results in African countries, where entomological and epidemiological conditions vary tremendously[11]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.