Abstract

To develop a model using radiomics features extracted from magnetic resonance imaging (MRI) images of Gamma Knife radiosurgery (GKRS) to predict the BRAF mutation in patients with melanoma brain metastases (MBM). Data of 220 tumours were classified into two groups. One was a group whose BRAF mutation was identified, and the other group whose BRAF mutation was not identified. We extracted 1,962 radiomics features from gadolinium contrast-enhanced T1-weighted MRI treatment-planning images. Synthetic Minority Over-sampling TEchnique (SMOTE) was performed to address the unbalanced data-related issues. A single-layer neural network (NN) was used to build predictive models with radiomics features. The sensitivity, specificity, accuracy, and the area under the curve (AUC) were evaluated to assess the model performance. The prediction performance for the final evaluation without the SMOTE had an accuracy of 77.14%, a specificity of 82.44%, a sensitivity of 81.85%, and an AUC of 0.79. The application of SMOTE improved the prediction model to an accuracy of 83.1%, a specificity of 87.07%, a sensitivity of 78.82%, and an AUC of 0.82. The current study showed the feasibility of generating a highly accurate NN model for the BRAF mutation prediction. The prediction performance improved with SMOTE. The model assists physicians to obtain more accurate expectations of the treatment outcome without a genetic test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.