Abstract

The ANTARES dataset is a large collection of known and verified experimental bioconcentration factor data, involving 851 highly heterogeneous compounds from which 159 are pesticides. The BCF ANTARES data were used to derive a conformation-independent QSPR model. A large set of 27,017 molecular descriptors was explored, with the main intention of capturing the most relevant structural characteristics affecting the studied property. The structural descriptors were derived with different freeware tools, such as PaDEL, Epi Suite, CORAL, Mold2, RECON, and QuBiLs-MAS, and so it was interesting to find out the way that the different descriptor tools complemented each other in order to improve the statistical quality of the established QSPR. The best multivariable linear regression models were found with the Replacement Method variable sub-set selection technique. The proposed QSPR model improves previous reported models of the bioconcentration factor in the present dataset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.