Abstract

Mind-wandering refers to the process of thinking task-unrelated thoughts while performing a task. The dynamics of mind-wandering remain elusive because it is difficult to track when someone’s mind is wandering based only on behavior. The goal of this study is to develop a machine-learning classifier that can determine someone’s mind-wandering state online using electroencephalography (EEG) in a way that generalizes across tasks. In particular, we trained machine-learning models on EEG markers to classify the participants’ current state as either mind-wandering or on-task. To be able to examine the task generality of the classifier, two different paradigms were adopted in this study: a sustained attention to response task (SART) and a visual search task. In both tasks, probe questions asking for a self-report of the thoughts at that moment were inserted at random moments, and participants’ responses to the probes were used to create labels for the classifier. The 6 trials preceding an off-task response were labeled as mind-wandering, whereas the 6 trials predicting an on-task response were labeled as on-task. The EEG markers used as features for the classifier included single-trial P1, N1, and P3, the power and coherence in the theta (4–8 Hz) and alpha (8.5–12 Hz) bands at PO7, Pz, PO8, and Fz. We used a support vector machine as the training algorithm to learn the connection between EEG markers and the current mind-wandering state. We were able to distinguish between on-task and off-task thinking with an accuracy ranging from 0.50 to 0.85. Moreover, the classifiers were task-general: The average accuracy in across-task prediction was 60%, which was above chance level. Among all the extracted EEG markers, alpha power was most predictive of mind-wandering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.