Abstract
AbstractNitrate N from artificially drained soils of the upper Midwest USA is finding its way to the Mississippi River and then to the Gulf of Mexico. There is some concern that this nitrate N is causing hypoxia in the Gulf of Mexico. The DRAINMOD‐N model was used to evaluate the long‐term effect of N application rate and drain spacing on corn (Zea mays L.) yield and nitrate N losses. Prior to evaluation, the model was calibrated and then validated against long‐term field data from southwestern Minnesota. A 24‐yr simulation showed that climate plays a major role in determining drainage, yield, and nitrate N losses from a moderately well‐drained Normania clay loam (fine‐loamy, mixed, mesic Aquic Hapludoll) soil under continuous corn. April to August rainfall accounted for 82% of the variation in drainage and 66% of the variation in nitrate N losses during the growing season. Corn yield increased significantly when drain spacing was changed from 56 to 28 m but there was much less increase when changing from 28 to 14 m. During the growing season, drain spacing had little effect on nitrate N losses from this soil. Cost‐benefit analysis showed that a 28 m drain spacing was a good design criterion for this soil. For a given drain spacing, an increase in N application rate significantly increased nitrate N losses through drainage. We conclude that efforts to reduce drainage‐associated nitrate N losses from soils with perched water table conditions in the upper Midwest USA should concentrate on identifying N management strategies that increase N use efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.