Abstract

The combination of predictive data-driven models with frequent glucose measurements may provide for an early warning of impending glucose excursions and proactive regulatory interventions for diabetes patients. However, from a modeling perspective, before the benefits of such a strategy can be attained, we must first be able to quantitatively characterize the behavior of the model coefficients as well as the model predictions as a function of prediction horizon. We need to determine if the model coefficients reflect viable physiologic dependencies of the individual glycemic measurements and whether the model is stable with respect to small changes in noise levels, leading to accurate near-future predictions with negligible time lag. We assessed the behavior of linear autoregressive data-driven models developed under three possible modeling scenarios, using continuous glucose measurements of nine subjects collected on a minute-by-minute basis for approximately 5 days. Simulation results indicated that stable and accurate models for near-future glycemic predictions (< 60 min) with clinically acceptable time lags are attained only when the raw glucose measurements are smoothed and the model coefficients are regularized. This study provides a starting point for further needed investigations before real-time deployment can be considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.