Abstract
Software developers are often faced with modification tasks that involve source which is spread across a code base. Some dependencies between source code, such as those between source code written in different languages, are difficult to determine using existing static and dynamic analyses. To augment existing analyses and to help developers identify relevant source code during a modification task, we have developed an approach that applies data mining techniques to determine change patterns - sets of files that were changed together frequently in the past - from the change history of the code base. Our hypothesis is that the change patterns can be used to recommend potentially relevant source code to a developer performing a modification task. We show that this approach can reveal valuable dependencies by applying the approach to the Eclipse and Mozilla open source projects and by evaluating the predictability and interestingness of the recommendations produced for actual modification tasks on these systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.