Abstract
This paper examines the forecasting qualities of Bayesian Model Averaging (BMA) over a set of single factor models of short-term interest rates. Using weekly and high frequency data for the one-month Eurodollar rate, BMA produces predictive likelihoods that are considerably better than the majority of the short-rate models, but marginally worse off than the best model in each dataset. We observe preference for models incorporating volatility clustering for weekly data and simpler short rate models for high frequency data. This is contrary to the popular belief that a diffusion process with volatility clustering best characterizes the short rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.