Abstract

Many in vitro tests have been developed to identify chemicals that can damage cellular DNA or cause mutations, and secondarily to identify potential carcinogens. The test receiving by far the most use and attention has been the Salmonella (SAL) mutagenesis test developed by Ames and colleagues [(1973): Proc Natl Acad Sci USA 70:2281-2285; (1975): Mutat Res 31:347-364], because of its initial promise of high qualitative (YES/NO) predictivity for cancer in rodents and, by extension, in humans. In addition to the initial reports of high qualitative predictivity, there was also an early report by Meselson and Russell [in Hiatt HH et al (1977): "Origins of Human Cancer, Book C: Human Risk Assessment," pp 1473-1481] of a quantitative relationship between mutagenic potency measured in SAL and carcinogenic potency measured in rodents, for a small number of chemicals. However, other reports using larger numbers of chemicals have found only very weak correlations. The primary purpose of this study was to determine whether mutagenic potency, as measured in a number of different ways, could be used to improve predictivity of carcinogenicity, either qualitatively or quantitatively. To this end, eight measures of SAL mutagenic potency were used. This study firmly establishes that the predictive relationship between mutagenic potency in SAL and rodent carcinogenicity is, at best, weak. When predicting qualitative carcinogenicity, only qualitative mutagenicity is useful; none of the quantitative measures of potency considered improves the carcinogenicity prediction. In fact, when qualitative mutagenicity is forced out of the model, the quantitative measures are still not predictive of carcinogenicity. When predicting quantitative carcinogenicity, several possible methods were considered for summarizing potency over all experiments; however, in all cases, the relationship between mutagenic potency predictors and quantitative carcinogenicity is very weak.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.