Abstract

Ubiquitous growth in the text mining field is unprecedented, where social media mining is playing a significant role. Gigantic growth of text mining is becoming a potential source of crowd wisdom extraction and analysis especially in terms of text pre-processing and sentiment analysis. The analysis of a potential influence of sentiment on real estate markets controversially discussed by scholars of finance, valuation and market efficiency supporters. Therefore, it’s a significant task of current research purview which not only provide an appropriate platform for the contributors but also for active real estate market information seekers. Text mining has gained the widespread attention of real estate market information users which is almost on explosion level. Accessibility of data on such behemoth scale mandates regular and critical analysis of this information for various perspectives’ plausibility. Rich patterns of online social text can be exploited to extract the relevant real estate information effectively. As text mining plays a significant and crucial role in discovery of these insights therefore its challenges and contribution in social media analysis must be explored extensively. In this paper, we provide a brief about the current summary of the modern state of text mining in pre-processing and sentiment for the real estate market analysis. Empha-sis is placed on the resources and learning mechanism available to real estate researchers and practitioners, as well as the major text mining tasks of interest to the community. Thus, the main aim of this chapter is to expound and intellectualize the domains of social media which are accessible on an extraordinary range in the field of text mining real estate for predicting real estate market trends and value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.