Abstract
Abstract Poverty in low-income countries is usually measured using large and infrequent household consumption surveys. The challenge is to find methods to measure poverty rates more frequently. This study validates a survey-to-survey imputation method, based on a statistical model utilizing consumption surveys and light surveys to measure changes in poverty rates over time. A decade of poverty predictions and regular poverty estimates in Malawi provides a unique case study. The analysis suggests that this modelling approach works within the same context given that households’ demographic composition is included in the model. Predicting poverty using different surveys is challenging because of different aspects of comparability. A new way to account for seasonal coverage strengthens the model when imputing for surveys covering different seasons. It is important for national statistics offices and supporting agencies to prioritize maintaining consistency in the way data are collected in surveys to provide comparable trends over time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.