Abstract

Let p be a prime and let a and b be elements of the finite field Fp of p elements. The inversive congruential generator (ICG) is a sequence (u n ) of pseudorandom numbers defined by the relation u n+1 ≡ au -1 n +b mod p. We show that if sufficiently many of the most significant bits of several consecutive values u n of the ICG are given, one can recover the initial value u 0 (even in the case where the coefficients a and b are not known). We also obtain similar results for the quadratic congruential generator (QCG), v n+1 ≡ f(v n ) mod p, where f ∈ F p [X]. This suggests that for cryptographic applications ICG and QCG should be used with great care. Our results are somewhat similar to those known for the linear congruential generator (LCG), x n+1 ≡ ax n + b mod p, but they apply only to much longer bit strings. We also estimate limits of some heuristic approaches, which still remain much weaker than those known for LCG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.