Abstract

Nanoemulsion (NE) is a dosage form widely used in pharmaceutical, food, agrochemical, cosmetics, and personal care industries. NE systems are usually formulated through trial and error via numerous semi-empirical experiments. Moreover, the complex interaction mechanisms between the formulation surfactant and cosurfactant are difficult to understand. Dissipative particle dynamics (DPD) may be helpful in solving these formulation problems. Silibinin is a flavonolignan isolated from milk thistle, which has demonstrated antioxidant and antimicrobial effects. For this project, silibinin-loaded nanoemulsion (SBNE) was formulated by DPD, including surfactant and cosurfactant screening, pseudo-ternary phase construction, and SBNE characterization, all of which were verified by experimentation. Most importantly, this work shows that DPD can be adopted to explore the synergetic mechanisms between the surfactant and cosurfactant, including emulsification efficiency, distance, angle, arrangement, and order parameter. Additional verification experiments on the antioxidant and antimicrobial applications of simulation-designed SBNE were also carried out and confirmed DPD-predicted results. As such, predicting NE formulation by DPD has been proven to be feasible. For SBNE, the addition of PEG400 cosurfactant stretches the Cremophor RH40 surfactant molecules and assists in a more orderly arrangement. An enhanced interfacial thickness in SBNE could be attributed to the stretched hydrophilic head group and the decreased angle between the molecular axis and interface normal. These DPD and experimentally-verified results indicated that a proper cosurfactant will enhance the interfacial thickness, decrease the consumption of surfactant, and benefit NE formation. This new computationally applied knowledge should facilitate optimizing, designing, and understanding NE formulation more rationally and scientifically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.