Abstract
To pioneer the first artificial intelligence system integrating radiological and objective clinical data, simulating the clinical reasoning process, for the early prediction of high-risk influenza patients. Our system was developed using a cohort from National Taiwan University Hospital in Taiwan, with external validation data from ASST Grande Ospedale Metropolitano Niguarda in Italy. Convolutional neural networks pretrained on ImageNet were regressively trained using a 5-point scale to develop the influenza chest X-ray (CXR) severity scoring model, FluDeep-XR. Early, late, and joint fusion structures, incorporating varying weights of CXR severity with clinical data, were designed to predict 30-day mortality and compared with models using only CXR or clinical data. The best-performing model was designated as FluDeep. The explainability of FluDeep-XR and FluDeep was illustrated through activation maps and SHapley Additive exPlanations (SHAP). The Xception-based model, FluDeep-XR, achieved a mean square error of 0.738 in the external validation dataset. The Random Forest-based late fusion model, FluDeep, outperformed all the other models, achieving an area under the receiver operating curve of 0.818 and a sensitivity of 0.706 in the external dataset. Activation maps highlighted clear lung fields. Shapley additive explanations identified age, C-reactive protein, hematocrit, heart rate, and respiratory rate as the top 5 important clinical features. The integration of medical imaging with objective clinical data outperformed single-modality models to predict 30-day mortality in influenza patients. We ensured the explainability of our models aligned with clinical knowledge and validated its applicability across foreign institutions. FluDeep highlights the potential of combining radiological and clinical information in late fusion design, enhancing diagnostic accuracy and offering an explainable, and generalizable decision support system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Medical Informatics Association : JAMIA
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.