Abstract
In this work, we predicted the gradient of the deformational moisture dynamics in a sized commercial paper by observing the curl deformation in response to the one-sided water application. The deformational moisture is a part of the applied liquid which ends up in the fibers causing swelling and subsequent mechanical response of the entire fiber network structure. The adapted approach combines traditional experimental procedures, advanced machine learning techniques and continuum modeling to provide insights into the complex phenomenon relevant to ink-jet digital printing in which the sized and coated paper is often used, meaning that not all the applied moisture will reach the fibers. Key material properties including elasticity, plastic parameters, viscoelasticity, creep, moisture dependent behavior, along with hygroexpansion coefficients are identified through extensive testing, providing vital data for subsequent simulation using a continuum model. Two machine learning models, a Feedforward Neural Network (FNN) and a Recurrent Neural Network (RNN), are probed in this study. Both models are trained using exclusively numerically generated moisture profile histories, showcasing the value of such data in contexts where experimental data acquisition is challenging. These two models are subsequently utilized to predict moisture profile history based on curl experimental measurements, with the RNN demonstrating superior accuracy due to its ability to account for temporal dependencies. The predicted moisture profiles are used as inputs for the continuum model to simulate the associated curl response comparing it to the experiment representing “never seen” data. The result of comparison shows highly predictive capability of the RNN. This study melds traditional experimental methods and innovative machine learning techniques, providing a robust technique for predicting moisture gradient dynamics that can be used for both optimizing the ink solution and paper structure to achieve desirable printing quality with lowest curl propensities during printing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.