Abstract

BackgroundMicroRNAs (miRNAs) were aberrantly regulated in cancers, showing their roles as novel classes of oncogenes and tumor suppressors. Hence, an integrated method was introduced in this study to explore miRNA targets for hepatocellular carcinoma (HCC).MethodsThe Borda count election algorithm was applied to combine a correlation method (Pearson’s correlation coefficient, PCC), a causal inference method (IDA), and a regression method (Lasso) to generate an integrated method. Subsequently, to confirm the performance of the integrated method, the predicted miRNA targets results were compared with the confirmed database. Finally, pathway enrichment analysis was applied to evaluate the target genes in the top 1,000 miRNA-messenger RNA (mRNA) interactions.ResultsThe method was confirmed to be an approach to predict miRNA targets. Moreover, 50 highly confident miRNA-mRNA interactions were obtained, including 6 miRNA targets with predicted times ≥10 (for instance, MEG3). The 860 target genes of the top 1,000 miRNA-mRNA interactions were enriched in 26 pathways, of which complement and coagulation cascades were most significant.ConclusionsThe results might supply great insights for revealing the pathological mechanism underlying HCC and explore potential biomarkers for the diagnosis and treatment of this tumor. However, these biomarkers have not been confirmed, and the related validations should be performed in future studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.