Abstract

The fracture properties of particulate-reinforced metal matrix composites (MMCs) are influenced by several factors, such as particle size, inter-particle spacing and volume fraction of the reinforcement. In addition, complex microstructural mechanisms, such as precipitation hardening induced by heat treatment processing, affect the fracture toughness of MMCs. Precipitates that are formed at the particle/matrix interface region, lead to improvement of the interfacial strength, and hence enhancement of the macroscopic strength properties of the composite material. In this paper, a micro-mechanics model, based on thermodynamics principles, is proposed to determine the fracture strength of the interface at a segregated state in MMCs. This model uses energy considerations to express the fracture toughness of the interface in terms of interfacial critical strain energy release rate and elastic modulus. The interfacial fracture toughness is further expressed as a function of the macroscopic fracture toughness and mechanical properties of the composite, using a toughening mechanism model based on crack deflection and interface cracking. Mechanical testing is also performed to obtain macroscopic data, such as the fracture strength, elastic modulus and fracture toughness of the composite, which are used as input to the model. Based on the experimental data and the analysis, the interfacial strength is determined for SiC particle-reinforced aluminium matrix composites subjected to different heat treatment processing conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.