Abstract
AbstractWe compare two approaches to modelling floodplain inundation: a raster‐based approach, which uses a relatively simple process representation, with channel flows being resolved separately from the floodplain using either a kinematic or diffusive wave approximation, and a finite‐element hydraulic model aiming to solve the full two‐dimensional shallow‐water equations. A flood event on a short (c. 4 km) reach of the upper River Thames in the UK is simulated, the models being validated against inundation extent as determined from satellite synthetic aperture radar (SAR) imagery. The unconstrained friction parameters are found through a calibration procedure, where a measure of fit between predicted and observed shorelines is maximized. The raster and finite‐element models offer similar levels of performance, both classifying approximately 84% of the model domain correctly, compared with 65% for a simple planar prediction of water surface elevation. Further discrimination between models is not possible given the errors in the validation data. The simple raster‐based model is shown to have considerable advantages in terms of producing a straightforward calibration process, and being robust with respect to channel specification. Copyright © 2001 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.