Abstract

It is believed that eye movements in free-viewing of natural scenes are directed by both bottom-up visual saliency and top-down visual factors. In this paper, we propose a novel computational framework to simultaneously learn these two types of visual features from raw image data using a multiresolution convolutional neural network (Mr-CNN) for predicting eye fixations. The Mr-CNN is directly trained from image regions centered on fixation and non-fixation locations over multiple resolutions, using raw image pixels as inputs and eye fixation attributes as labels. Diverse top-down visual features can be learned in higher layers. Meanwhile bottom-up visual saliency can also be inferred via combining information over multiple resolutions. Finally, optimal integration of bottom-up and top-down cues can be learned in the last logistic regression layer to predict eye fixations. The proposed approach achieves state-of-the-art results over four publically available benchmark datasets, demonstrating the superiority of our work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.