Abstract

This research focuses on predicting the demand for air taxi urban air mobility (UAM) services during different times of the day in various geographic regions of New York City using machine learning algorithms (MLAs). Several ride-related factors (such as month of the year, day of the week and time of the day) and weather-related variables (such as temperature, weather conditions and visibility) are used as predictors for four popular MLAs, namely, logistic regression, artificial neural networks, random forests, and gradient boosting. Experimental results suggest gradient boosting to consistently provide higher prediction performance. Specific locations, certain time periods and weekdays consistently emerged as critical predictors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.