Abstract
ABSTRACT This paper presents the main results obtained during a long and intensive research period on the modelling of the main physical mechanisms related to damage and fracture of concrete. The starting point has been the Mazars one scalar damage model (Mazars, 1984, 1986). On this base Pontiroli & Rouquand have proposed in 1995 a two scalar damage model (PRM model) which takes into account the crack closure mechanism, irreversible strains, strain rate effects and internal friction stresses. This model has been recently completed in order to take into account pore collapse phenomena, plastic shear deformations and the water content effect on the behaviour of concrete for confined loading. All these mechanisms allow the simulation of a large range of loadings from static to high velocity impacts. After a presentation of the most important features of the “PRM coupled model” several applications are given related to quasi static loading, blast or impact effects on concrete structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Environmental and Civil Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.