Abstract
PurposeTo identify factors and indicators that affect chronic pain and pain relief, and to develop predictive models using machine learning. MethodsWe analyzed the data of 67,028 outpatient cases and 11,310 valid samples with pain from a large retrospective cohort. We used decision tree, random forest, AdaBoost, neural network, and logistic regression to discover significant indicators and to predict pain and treatment relief. FindingsThe random forest model had the highest accuracy, F1 value, precision, and recall rates for predicting pain relief. The main factors affecting pain and treatment relief included body mass index, blood pressure, age, body temperature, heart rate, pulse, and neutrophil/lymphocyte × platelet ratio. The logistic regression model had high sensitivity and specificity for predicting pain occurrence. ImplicationsMachine learning models can be used to analyze the risk factors and predictors of chronic pain and pain relief, and to provide personalized and evidence-based pain management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.